

WP8 - SCIENTIFIC AND TECHNICAL VALIDATION OF PRODUCT AND SERVICES

Speaker: Monica Pepe (CNR-IREA)

Task 8.1 Leader: Ioannis Gitas (AUTH) Task 8.2 Leader: Manuel Campos-Taberner (UVEG) Task 8.3 Leader: Ignacio Miralles (UJI)

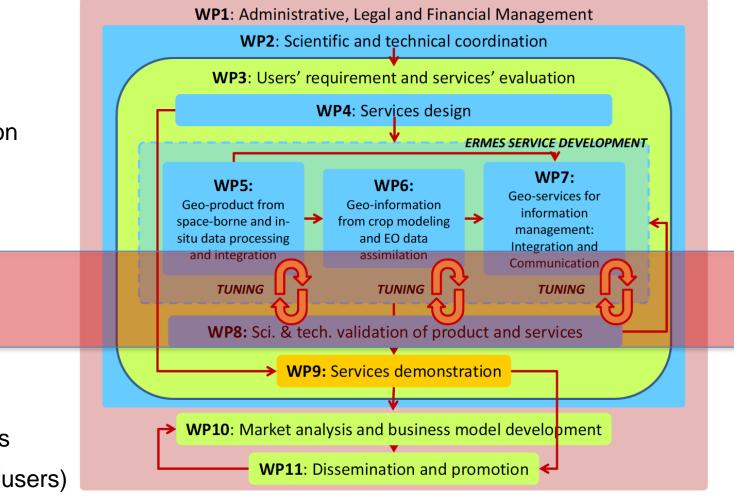
Main Contributors (In no particular order):

Dimitrios Katsantonis (DEMETER) Dimitris Stavrakudis (AUTH) Goncal Grau, Javier Garcia Haro, Beatriz Martínez (UVEG) Francesco Holecz, Massimo Barbieri, Luca Gatti (SARMAP) Filomena Romano, Elisabetta Ricciardelli, Mariassunta Viggiano (IMAA) Alberto Crema, Francesco Nutini, Luigi Ranghetti, Lorenzo Busetto, Daniela Stroppiana, Mirco Boschetti (IREA) Roberto Confalonieri, Simone Bregaglio, Valentina Pagani, Tommaso Stella (UMIL) Nacho Miralles, Carlos Granell, Sven Casteleyn, Sergi Trilles (UJI)

✓ Introduction: WP Objectives and workplan

- ✓ Activities
- ✓ Results
- ✓ Final Remarks

Main Objectives of the WP8

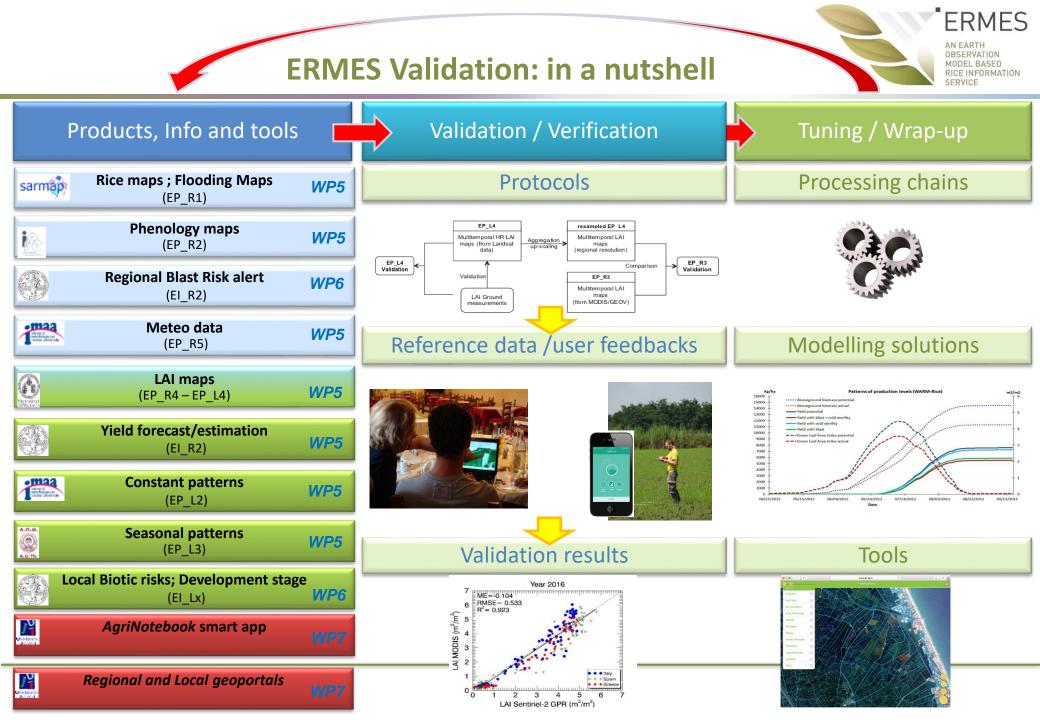

Assess **products** and **services** quality:

- ✓ EO products
- ✓ crop model information
- ✓ the overall service functionalities

feedbacks

scientific soundness

operational needs (users)



Work Plan for Months 18-34

	Sep-15	Oct-15	Nov-15	Dec-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	Jul-16	Aug-16	Sep-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17
Deliv	М19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30	M31	M32	M33	M34	M35	M36
D8.1			lucts technic tion: first ye															
D8.2	ERMES local products technical and scientific validation: second year v1																	
D8.3			oducts techn tion: first ye						1 1 1									
D8.4	ERMES regional products technical and scientific validation: second year v1																	
D8.5			hnical and so first year v0															
D8.6																		

Workplan of WP8 in months 18-34 with reference to expected deliverables

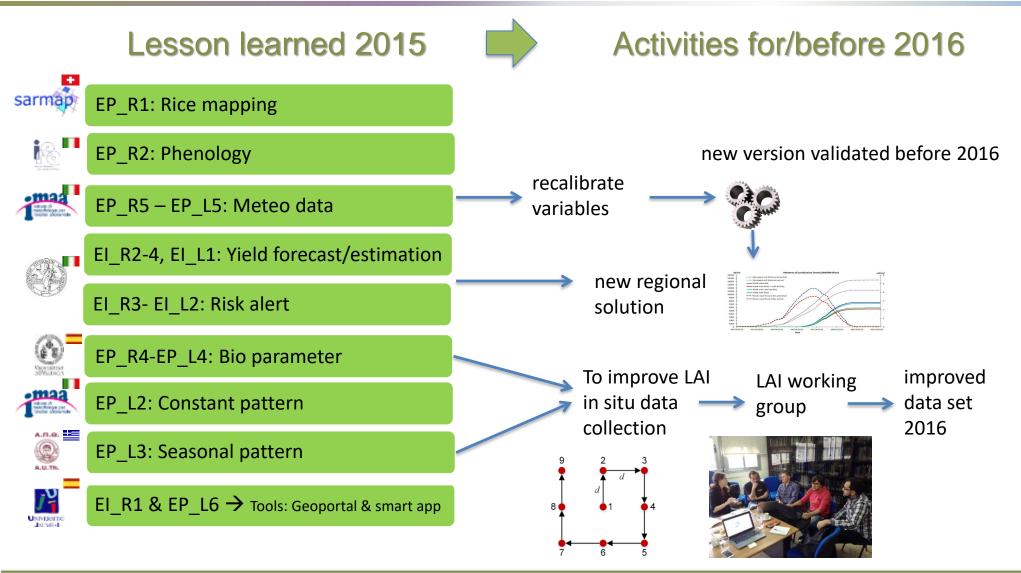
- ✓ Introduction: WP Objectives and workplan
- ✓ Activities
- ✓ Results
- ✓ Final Remarks

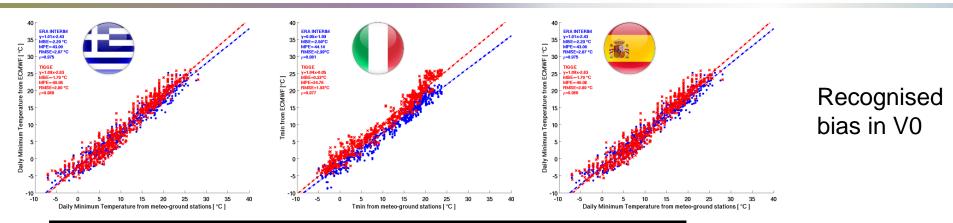
First demonstration year

- finalize accuracy/quality assessment (single products/tools and of the overall services) for 2015
- analyse the lessons learnt after 2015 and propose tuning and improvements as regards processing chains, solutions and tools for the second year of demonstration

Second demonstration year

- accuracy/quality assessment for 2016
- analyse and recap the level of quality achieved by the products, tools and services at the end of the demonstration phase


Monitoring product quality throughout workflows and among countries


- ✓ Introduction: WP Objectives and workplan
- ✓ Activities
- ✓ Results
 - ✓ Lesson learned after first year of demonstration (2015 crop season)
 - ✓ Validation after second year of demonstration (2016 crop season)
- ✓ Final Remarks

from 2015 to 2016

meteo data re-processing

AREA		Statistical s	cores for TM	ах		Statistical scores for TMin			
	ρ	MPE [%]	MBE [°C]	RMSE [°C]	ρ	MPE [%]	MBE [°C]	RMSE [°C]	
GR (no cal.)	0.98	14.64	-2.42	3.13	0.98	36.98	-3.48	3.81	
GR (cal.)	0.98	1.08	-0.21	1.84	0.98	19.14	-1.86	2.39	
IT (no cal.)	0.96	9.79	-2.22	3.46	0.96	34.31	-2.23	3.12	
IT (cal.)	0.97	5.75	-0.07	2.30	0.96	7.45	0.16	2.15	
ES (no cal.)	0.94	15.93	-3.34	4.02	0.95	23.421	-2.71	3.36	
ES (cal.)	0.95	0.93	-0.18	2.03	0.96	6.14	-0.84	1.97	

MPE [%] 36.98 19.14 34.31 7.45 23.421 6.14 ERMES

AN EARTH

OBSERVATION MODEL BASED RICE INFORMATION SERVICE

intercalibration with MARS data sets (for archive and NRT) Improved performance in V1

Example \rightarrow Archive (2003 – 2014)

- ✓ Introduction: WP Objectives and workplan
- ✓ Activities
- ✓ Results
 - ✓ lesson learned after first year of demonstration (2015 crop season)
 - ✓ Validation after second year of demonstration (2016 crop season)
 - A. EO product (EP_*)
 - 1. against reference data
 - 2. Indicators of internal consistency
 - 3. comparison with related variables
 - 4. intercomparison among products
 - 5. against expert knowledge and other ancillary data (judgement)
 - B. Modelling information (EI_*)
- ✓ Final Remarks

EO product (EP_*)

Rice crop maps (EP_R1)

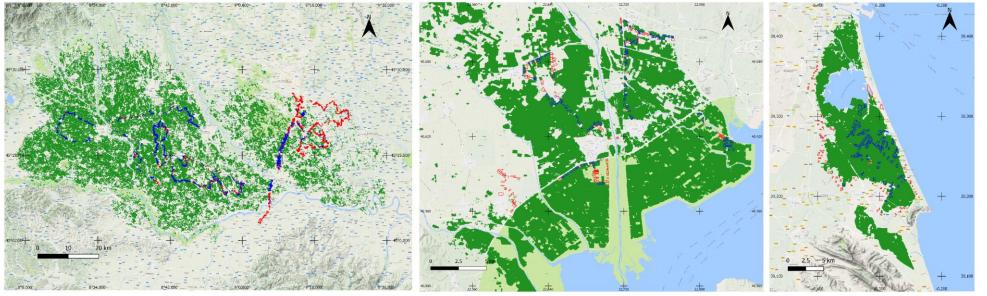


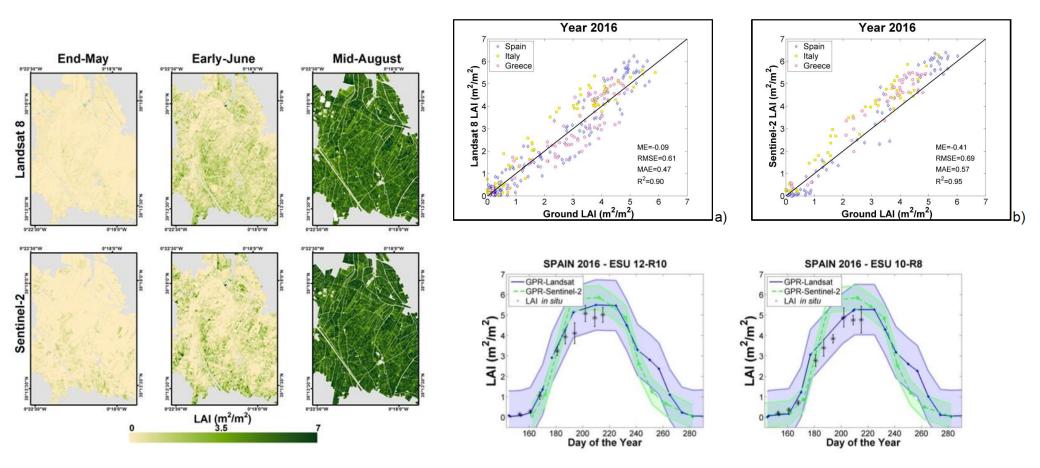
Table S2. Confusion matrices related to rice crop maps.

Italy

	Classification RICE	Classification NOT RICE	Producer's Accuracy
Reference RICE	1639	194	89.4
Reference NOT RICE	157	1237	88.7
User's accuracy	91.3	86.4	

Greece

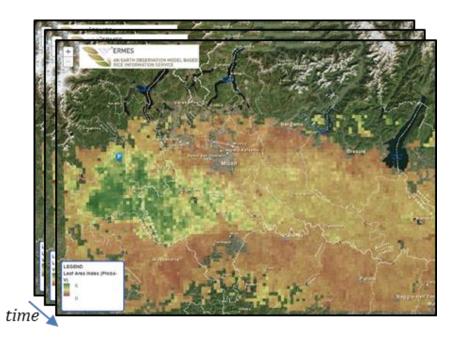
	Classification RICE	Classification NOT RICE	Producer's Accuracy
Reference RICE	7812	369	95.5
Reference NOT RICE	143	7364	98.1
User's accuracy	98.2	95.2	

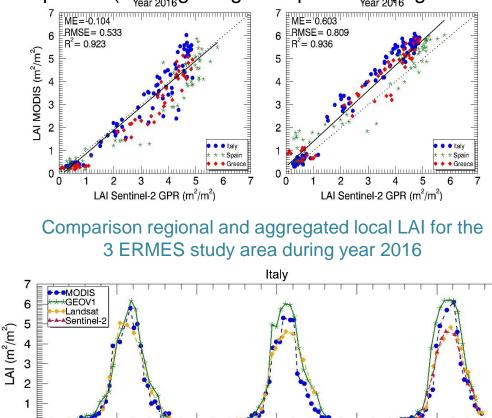

Spain

	Classification RICE	Classification NOT RICE	Producer's Accuracy
Reference RICE	21606	186	99.1
Reference NOT RICE	9	7367	99.9
User's accuracy	100.0	97.5	

1) Comparison against reference data

High Resolution LAI maps vs field data (EP_L4)




lumuhunuhunuhunuh

2017.0

Copernicus (EP_R3) vs HR LAI maps (EP_L4)

- A good consistency (high correlation, low bias) between the regional and local aggregated LAI maps \checkmark
- similar dynamics from sowing up to rice development (although regional products (e.g. GEOV1) present higher values during the peak season) 7 ME=-0.104 ME= 0.603

2014.0 Temporal evolutions in the 2014, 2015 and 2016 rice seasons for a representative rice pixel in Italy.

2015.5

2016.0

2016.5

2015.0

2014.5

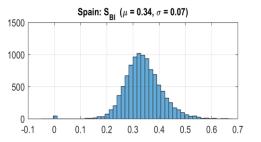
OBSERVATION MODEL BASED RICE INFORMATION SERVICE

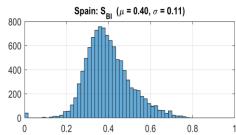
Computation of "silhouette index" (cluster optimality): constant patterns (EP_L2)

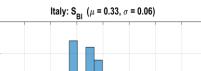
15

10

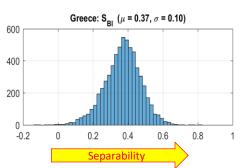
Soil Quality

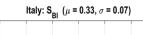

Crop Vigour

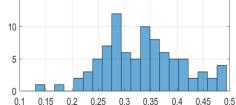


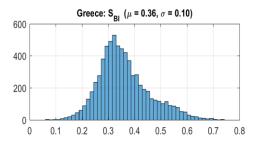

Intersection

Good separability of clusters


15

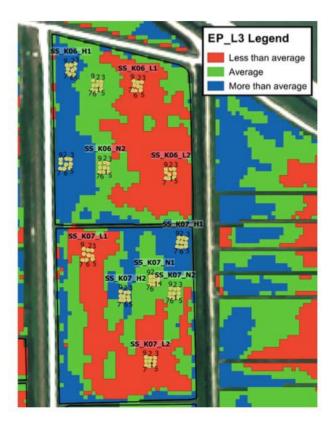


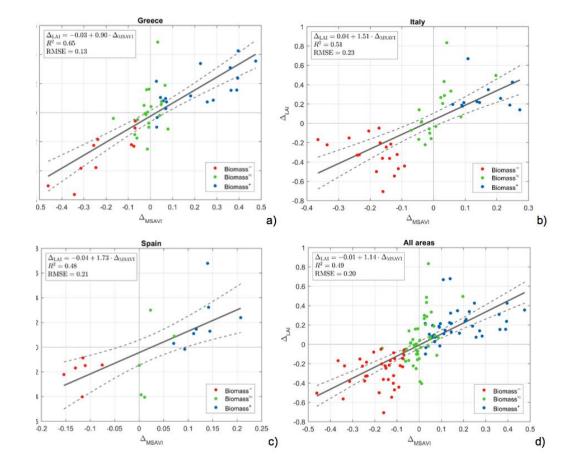



0.15 0.2 0.3 0.35 0.4 0.45 0.5 0.55 0.25

 $S_i =$

 $\max\{a_{ni}, b\}$


Euclidean distances of object (pixel) \boldsymbol{x}_i from the nearest and second nearest prototype (cluster centre).


ERMES

AN EARTH

3) Comparison with related parameters:

Coherence of MSAVI patterns with infield LAI anomalies

ERMES

AN EARTH OBSERVATION MODEL BASED RICE INFORMATION SERVICE

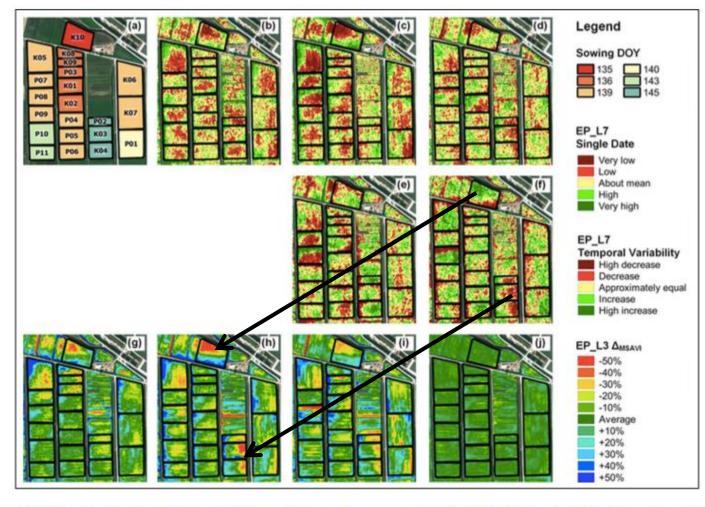
Coherence of information provided by local spatial variability products (pairwise)

Products compared	Objective	Method	Results	Comment		
EP_L2 & EP_L3	constant patterns (EP_L2) tend to affect the current growing season's within- parcel variability (EP_L3) ?	one-way ANOVA and Tukey's HSD test EP_L3 variability maps vs EP_L2 for the second part of the season	significant differences in mean $\Delta_{\rm MSAVI}$ values for all EP_L2 classes	a substantial number of parcel presented seasonal variabilities during the 2016 growing season that were also identified in previous years		
EP_L3 & EP_L4	within-parcel biomass variability (EP_L3) explains the variability in LAI (EP_L4) during the growing season?	$\begin{array}{c} \mbox{Correlation analysis} \\ \mbox{EP}_L3 \mbox{ variability maps } (\Delta_{\rm MSAVI}) \\ \mbox{ and a corresponding LAI} \\ \mbox{variability measure } \Delta_{\rm LAI} \mbox{ from the} \\ \mbox{EP}_L4 \mbox{ LAI maps} \end{array}$	it confirms the correlation between the EP_L3 variability maps and the within-parcel variability of LAI	this confirms the suitability of the EP_L3 for supporting VRT surface fertilisation activities		
EP_L3 & EP_L7	biomass variability (EP_L3) and crop homogeneity (EP_L7) at different stages of the development cycle do correspond?	one-way ANOVA and Tukey's HSD test EP_L3 variability maps (Δ _{MSAVI}) against the EP_L7 single-date classifications (before and after the booting stage)	significant differences between the Δ _{MSAVI} mean values for each EP_L7 class	distributions with high degree of overlap, some complementarity of products		

Outcomes:

- Coherence → constant/seasonal patterns; seasonal patterns/LAI maps

- Complementarity \rightarrow EP_L7 shows variabilities that are not detected by other products

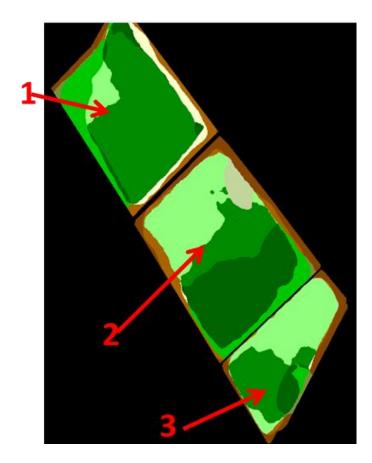

FRMES

OBSERVATION MODEL BASED RICE INFORMATION

4) Intercomparison among products 2/2

Example: intercomparison between products: EP_L3 vs EP_L7

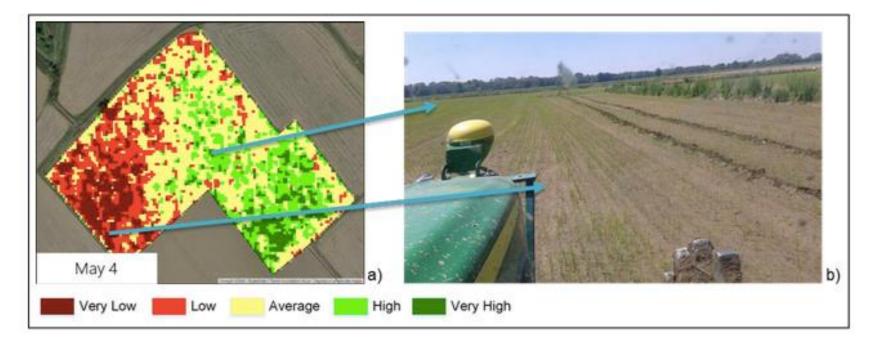
Coherent as development is favourable or faster, opposite something is affecting the biomass


ERMES

AN EARTH OBSERVATION MODEL BASED RICE INFORMATION SERVICE

Figure 6.2: Various ERMES products produced during the 2016 growing season for some parcels inside DEMETER's stations in the Greek local study area. a) Sowing DOYs and names the parcels mentioned in the main text; the single-date EP_L7 product at DOY: b) 159, c) 167 and d) 175; the temporal variability EP_L7 product at DOYs: e) 159–167 and f) 167–175; the EP_L3 Δ_{MSAVI} products at DOY: g) 162, h) 174, i) 184 and j) 211.

Validation against expert knowledge: constant pattern (EP_L2)



The constant patterns retrieved by EP_L2 map is explained by farmer knowledge:

- Zone 1 is to be ascribed to the water provision from this upper left area (red arrow).
- Zone 2 crop vigour differences in the map are related to a different soil texture.
- Zone 3 is almost due to the fact that this zone is interested by a overlapping by fertilizer spreader.

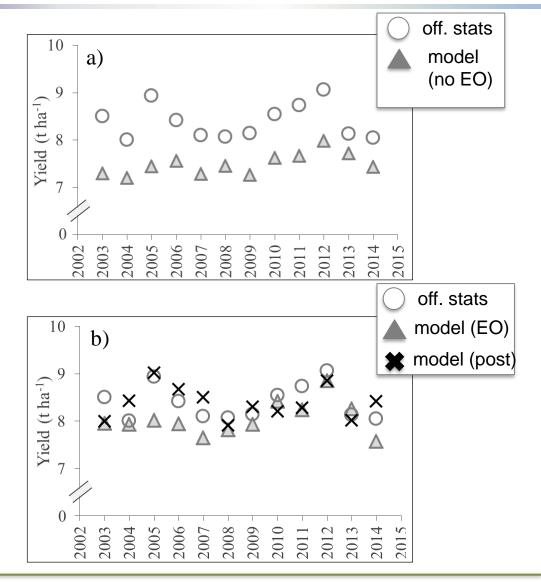
Validation against expert knowledge: early stages homogeneity maps (EP_L7)

Anomaly in SAR product (provided in NRT) reveals a strong correspondence to poor emergence in the field

Modelling information (EI_*)

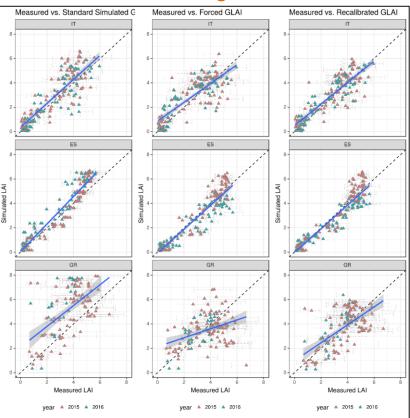
Regional Modelling solution (EI_R*)

AN EARTH OBSERVATION MODEL BASED RICE INFORMATION SERVICE


Yield estimation against official statistics

Comparison between official and yields forecasted for Japonica cultivars in Valencia using

- a) no EO products
- only the crop model


b) with EO products assimilation

- Only <u>assimilation</u> of remote sensing LAI
- statistical <u>post-processing</u> of simulated results (including LAI assimilation).

Simulated LAI against in situ data (assimilation of EO data)

Country	Model	2016							
Country	Wouer	Ν	Slope	Int.	MAE	RMSE	EF	R ²	
	Default	105	0.95	0.25	0.68	0.77	0.79	0.76*	
Italy	Recalibrated	105	0.93	0.34	0.51	0.56	0.89	0.86*	
Curciu	Default	467	1.13	0.36	0.75	0.62	0.89	0.93*	
Spain	Recalibrated	167	0.77	0.19	0.58	0.47	0.93	0.92*	
6	Default	22	1.64	0.71	2.82	2.97	-6.93	0.59*	
Greece	Recalibrated	33	1.12	-0.01	0.85	0.99	0.11	0.58*	

Yield estimations at parcel level

- original model exhibited a generally satisfactory accuracy (average absolute errors of 1.69 t/ha and 0.77 t/ha obtained in the 2016 datasets for Greece and Italy, respectively).
- incorporation of EO information increased the model's accuracy (improvement of approximately 23-30%)

WP8 – FINAL REMARKS

- ✓ Big effort in
 - collecting in situ data (using homogeneous protocol) and maximize their usefulness
 - ✓ interacting with users (single product and service levels)
- ✓ quality of EO products @different scales proved to be adequate
- ✓ importance of EO data assimilation into modelling solutions
- suitability of tools for providing value added information as usable and in time

Question Time

ERMES Final Periodic Review Meeting – Milano – 04/04/2017