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ABSTRACT -  

This work is focussed on evaluating data fusion methods between medium-resolution imagery such as MODIS 
and high-resolution datasets such as Landsat. A recently developed method, namely Spatial and Temporal 
Reflectance Unmixing Model (STRUM) is evaluated. The study area is the rice district in Valencia (Spain) and 
the overall objective consists in obtaining time series of Landsat-like reflectance imagery using MODIS time 
series and a limited number of Landsat 8 imagery. The results are suitable to monitor an agronomic season with 
enhanced spatial resolution within the context of ERMES (EU  FP7). This will contribute to produce timely 
information to force model simulation to the conditions observed by satellite monitoring at a local scale. 
 

1 INTRODUCTION 

Information of the phenological development is a 
fundamental element in crop monitoring because it 
describes the actual state of the cultivated 
species/varieties and their relation with the pedo-
climatic conditions. Multitemporal satellite imagery 
may provide occurrence estimation of the phenological 
stages in a spatially distributed model. However, 
factors such as inadequate spatial or temporal 
resolution and cloud cover have limited the 
effectiveness of utilizing satellite imagery.  
       Landsat mission provides one of the most 
extensively used high-resolution data sets. Landsat 
TM, ETM+ and OLI sensors have a spatial resolution 
of 30 m for the multispectral bands, which is adequate 
for many environmental applications. However, 
Landsat satellites have a revisit time of 16 days, and 
an average of 35% of the images are plagued by cloud 
cover (Roy et al., 2008). On the other hand, medium-
resolution MODIS TERRA imagery have a daily 
revisit period, but a lower spatial resolution which 
limits its effectiveness for fine-scale environmental 
applications. 
       In order to overcome this problem we focussed on 
evaluating data fusion methods between MODIS and 
Landsat. Two prevalent data fusion methods are the 
Spatial and Temporal Adaptive Reflectance Fusion 
Model (STARFM) (Gao et al. 2006) and unmixing-
based data fusion (Zurita-Milla, 2009, 2011; Amorós-
López, 2013). In this study we apply a recently 
developed algoritm, namely the Spatial and Temporal 
Reflectance Unmixing Model (STRUM), which 
combines the strengths of both algorithms (Gevaert 

and García, 2015). The potential of this method is 
demonstrated using Landsat and MODIS imagery.  
       The ability of fused images to capture 
phenological variations is also assessed using temporal 
NDVI profiles. The study area is the rice district in 
Valencia (Spain) and the overall objective consists in 
obtaining time series of reflectance imagery during an 
agronomic season with enhanced spatial resolution. 
Improvement is achieved by downscaling time series 
of MODIS products to disaggregate the product 
medium resolution using the information about their 
pixel composition provided by high resolution data.  
2 METHODOLOGY  
STRUM is an unmixing based method inspired by 
STARFM principles, i.e. assuming that MODIS and 
Landsat surface reflectance are radiometrically and 
temporally comparable. Similar to the STARFM, this 
method requires three input images: a Landsat and 
MODIS image on the same base date (t0), and a 
MODIS image on the prediction date (tk). A residual 
image is defined as the difference between the two 
MODIS images, i.e.  
 
           residual =M(tk) - M(t0)       (1) 
 
The definition of this residual implies that STRUM 
requires corresponding spectral bands between the 
high- and medium-resolution data, as opposed to the 
unmixing method which can be applied to all the 
spectral bands of the medium-resolution data. 
       Unmixing-based image fusion applies four steps 
to solve the linear mixing model (see figure 1):  
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Figure 1. Flow chart of the algorithm for FVC determination 

 

(1) Cluster the high-resolution dataset to define the 
endmembers. The present study applies the k-means 
algorithm to identify k spectral clusters. 
(2) Apply a sliding window of [n×n] MODIS pixels to 
the clustered image to record the endmember fractions 
A, a [n2×k] matrix with the abundances of each 
endmember within each medium-resolution pixel. The 
use of a sliding window allows for spectral differences 
between pixels of the same cluster in different 
locations.  
(3) Unmix the medium-resolution residual. The aim is 
to solve for e(λ) a [k×1] column vector that contains 
temporal changes of each endmember spectra in 
MODIS band (λ). residual(λ) is a [n2×1] column vector 
residual values (Ec. 1) of each MODIS pixel in the 
n×n moving window for the MODIS band λ which is 
currently being unmixed. This is achieved by 
minimizing the residuals (ε) of the linear model (Eq. 
2). 

residual (λ) = A e(λ) +  ε (2) 

We propose a Bayesian approach, which allows 
specifying the variances  and   assigned to the 

prior of e(λ) and the noisy reflectance data r(λ), 
respectively. For a detailed description, we refer to 
Murphy (2012). If the precision assigned to the prior 
is strong relative to the data strength (σ0 is large 
relative to σr), more emphasis is put on the prior and 

vice versa. The relative importance of the prior is 
controlled in this study by optimizing the ratio 
σratio=σr/σ0. 

 (4) Create the fused image. The temporal change of 
the relevant endmember is assigned to each Landsat 
pixel in the window to its class label, and added to the 
input Landsat image on the base date:  

 
L(tk ) = L(t0) + e(λ)       (3) 

 

The fused results therefore provide Landsat-like 
reflectances containing information regarding 
temporal variation in surface reflectances obtained 
from the input MODIS imagery.  

 

3. RESULTS 

3.1 Study area 

The study area is in the Albufera National park region 
near Valencia, Spain (39.33ºN, 0.36ºW). It is a 
rectangular area of 1008 km2, which corresponds to 
808×1399 Landsat pixels. The lands occupied by the 
cultivation of rice amounts to 16,000 ha, which is the 
area that has remained stable in recent years.  The area 
has a typical Mediterranean climate, mild, with an 
average annual humidity of 65%. The average annual 
temperature is 17° C. Their mean values ranging from 
11° C in January and 27° C in August. The mean 
annual precipitation is approximately 430 mm. 
Precipitation tends to be intense and concentrated in 
autumn. 
 

 
Figure 2. Location of the study area 

 

3.2 Satellite image preprocessing 

The current study uses Landsat 8/OLI imagery for the 
high-resolution input data. The Landsat 8 images were 
downloaded as a Level 1T product and corrected to 
TOA reflectance using the parameters provided in the 
metadata file. The images were atmospherically 
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corrected using the Dark Object Subtraction (DOS) 
method (Chavez, 1988). As the study area lies in two 
Landsat paths, images are available every 8 days 
rather than the usual interval of 16. However, only six 
corresponding cloud-free Landsat 8/OLI images were 
available within the time frame: May 3, May 19, June 
4, June 20, July 15, July 31 and September, 1, 2014. 
       The Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor, on board 
satellites Terra and Aqua, is used for medium-
resolution imagery. The MODIS MCD43A4 Nadir 
BRDF-Adjusted Reflectance product with a 463 m 
resolution was utilized, as previous studies have 
indicated that MODIS BRDF products provide more 
accurate data fusion results than daily MODIS surface 
reflectances (Roy et al., 2008; Walker et al., 2012). 
This product is a 16-day composite of both Aqua and 
Terra satellites, produced every 8 days. MCD43A4 
images corresponding to the same periods were used.  
       All images were subsetted to the study area, low-
quality pixels identified by the quality flag information 
were removed, and the images were reprojected to 
UTM coordinates. Furthermore, the geometric co-
registration of each Landsat-MODIS image pair was 
optimized. This was done by determining the optimal 
offset which maximized the Pearson’s correlation 
coefficient between all spectral bands of the MODIS 
image and resampled Landsat image. 
Inspection of the data revealed significant differences 
between the Landsat and MODIS reflectance data sets, 
caused by differences in image processing chains and 
spectral band difference effects (Teillet et al. 2007). In 
order to reduce this bias, a radiometric normalization 
method was applied, which assumes a linear 
relationship between the reflectance of both images. 
The critical aspect is the determination of suitable 
invariant pixels (at MODIS scale) upon which to base 
the normalization. We applied Iteratively Reweighted 
Multivariate Alteration Detection (IRMAD) 
transformation (Nielsen, 2007) to select pixels with a 
high no-change probability (i.e., >0.95). The method is 
completely automatic and compares favorably with 
normalization using hand-selected invariant features 
(Canty & Nielsen, 2008). We regressed the 
(resampled) Landsat images onto the corresponding 
MODIS images at no-change locations (see Figure 3). 
For each band, slope and intercept parameters were 
obtained using orthogonal linear regression, since it 
outperformed the ordinary least squares regression.  
 

  
Figure 3. Example of radiometric normalization in red 

waveband, corresponding to Landsat8/OLI June 4 (target) vs. 
MCD43 May, 25 – June, 10 (reference). Solid line: 

orthogonal regression. 
 
 

3.3 Data fusion optimization 
Optimal input parameters were identified using the 
Landsat 8/OLI image on June 4, 2014 and the MODIS 
composite from May 25-June 10th as base images, and 
the MODIS composite from July 12-28th to represent 
the prediction date (see Figure 4). The number of 
clusters was varied using the values k=10, 20, 40, and 
80. The window size was also varied from w=5 to 41 
MODIS pixels in steps of 4. The weight of the a priori 
endmember information was varied, using the values 
σratio=0.01, 1, 2, and 5.  
 

  
(a)           (b) 

Figure 4. The base pair (M(t0), L(t0)) used to predict surface 
reflectance for each M(tk).  (a) MODIS composite from May, 

25 – June, 10th ; (b) Landsat 8/OLI image on June 4. 
 
The accuracy was evaluated taking into account the 
Erreur Relative Globale Adimensionnelle de Synthèse 
(ERGAS) (Wald, 2002) and the correlation coefficient 
as a quality indicators. ERGAS was higher for smaller 
numbers of clusters (lower ERGAS and higher 
correlation coefficient). Few clusters (i.e. k=10 or 20) 
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produced better indicator values, and reduced the 
sensitivity to variations in moving-window size. In 
order to preserve the spectral variability while 
maintaining fusion quality, a small value of 
neighborhood size (i.e. less than 20) was preferred. 
Furthermore, it was observed that the inclusion of a 
priori spectral information allows to significantly 
improve the results. The optimal parameters in the 
current study were defined as w=9, k=20 and  σratio 
=1.0, although other combinations are also possible. 
 
 

3.4 Creation of fused Landsat 8/OLI Reflectance 

The application of these optimal parameters produced 
surface reflectances very similar to Landsat imagery, 
as indicated in Figure 5. These results correspond to a 
case with significant temporal change and suggest that 
a significant time between the base image date and 
prediction date did not significantly affect the ability 
to correctly predict Landsat-8 reflectance. Even better 
results were found in cases with little temporal change. 

 

   
(a)                          (b)         (c) 

Figure 5. Results of data fusion in a case with significant 
temporal change: using June 3th as a base date to predict 

reflectance on September 1st. (a) The MODIS composite of 
August 21-September 6, 2014; (b) the predictions using 

STRUM. (b) a reference (unused) Landsat image on 
September 1st. All images are displayed with the band 

combination R:Red, G:NIR, B: SWIR. 
 

3.5  Derivation of temporal profiles 

In order to assess whether the fused images are 
suitable for studying vegetation dynamics, the final 
experiment consisted of applying the STRUM 
algorithm to create NDVI temporal profiles of 8 fused 
images. The NDVI time series were assessed by 
examining seasonal variations over representative 
agricultural fields. The aim of the experiment was to 
fill gaps in the Landsat 8 temporal profiles by using 
only one Landsat 8 image to create the time series and 
8 MODIS data. This simulates realistic situations in 

which few high-resolution images are available. 
Furthermore, it allows unused Landsat images to act as 
a testing dataset to analyze the quality of the fused 
NDVI predictions.  
       The reconstruction of the Landsat-like rice cycle 
(May-September 2014) is illustrated in Figure 1. The 
Landsat image on June 4 and the MODIS composite 
from May 25-June 10th were used as base images. 
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Figure 6. Temporal profiles of the STRUM NDVI predictions 
for a scenario using a single Landsat image to create the 

temporal profiles. Results correspond to two representative 
agricultural fields. 

      Results confirm that STRUM has the potential to 
transfer temporal information from MODIS to Landsat 
in order to capture phenological variations. The 
method clearly outperforms existing literature methods 
at observing temporal dynamics in situations where 
limited high-resolution images are available. For 
example, Gevaert and García-Haro (2015) found that 
STARFM fails to capture phenological variations 
when having only 1 or 2 input Landsat 8 images and 
predictions are highly dependent on the number input 
images. 
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3 CONCLUSIONS 

Multi-sensor data fusion provides an opportunity to 
obtain imagery products which transcend physical 
sensor limitations. The STRUM algorithm has been 
recently proposed to produce Landsat-like reflectances 
while preserving the spatial patterns found in Landsat 
images. This paper explores the potential of this 
method to monitor an agronomic season of rice fields 
with enhanced spatial resolution, while incorporating 
information regarding temporal variation in 
reflectances obtained from the input MODIS imagery. 
       The STRUM produced surface reflectances very 
similar to Landsat imagery, even in challenging 
scenarios with a significant time between the base 
image date and prediction date. The ability of fused 
images to capture phenological variations has been 
also demonstrated. Temporal profiles of STRUM 
NDVI closely resembled Landsat NDVI profiles in 
experiments simulating situations where few input 
high-resolution images are available.  
       The results of this study confirm previous findings 
that STRUM is well suited for data fusion applications 
requiring Landsat-like surface reflectances, such as 
gap-filling and cloud replacement. The method has 
potential to generate high resolution imagery to 
monitor the rice agronomic season and provide timely 
information to force model simulation to the 
conditions observed by satellite monitoring at a local 
scale. 
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