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ABSTRACT - Regional scale vegetation monitoring and yield forecasting require the estimation of biophysical 
parameters, such as Leaf Area Index (LAI), biomass and canopy water content (CWC). The CWC is also targeted 
for fire risk and drought monitoring. This work presents a methodology for jointly retrieval of Canopy Water 
Content (CWC) and Leaf Area Index (LAI) from coarse resolution satellite data. The method combines the use of 
databases generated by radiative transfer models (PROSAIL) and powerful nonlinear regression approaches. 
The advantage of physical models is that they can be coupled each other, thereby providing a physically-based 
linkage between optical data and biochemical or structural state variables. Suitable parameter combinations of 
leaf and optical properties were used as inputs into the model to avoid unrealistic simulated spectra. 

 

1 INTRODUCTION 

Leaf area index (LAI), defined as the one-side area of 
leaves per unit of ground area (m2/m2) (Jonckheere et 
al., 2004) and Canopy Water Content (CWC), defined 
as the total mass of the liquid water per unit ground 
area (kg/m2) (Cheng et al., 2008; Trombetti et al., 
2008), are a key biophysical variables in agricultural 
and forestry applications. 

Several studies have proved the relationship 
between canopy reflectance and biophysical 
parameters (Pasoli et al., 2010; Lázaro-Gredilla et al., 
2014) such as LAI and CWC. In particular, the 
estimation of CWC from optical sensors is related to 
the water absorption features. 

SEVIRI/MSG is a geostationary meteorological 
satellite system that provides much higher frequency 
of observation of the land surface than sun-
synchronous systems. MSG SEVIRI bands are 
potentially suited to produce timely information on 
canopy water status and stress (Fensholt et al., 2010) 
due the potential of using water absorption band at 
1640 nm for the retrieval of CWC. 

We propose a retrieval method based on the 
inversion of a radiative transfer model PROSAIL 
(Jacquemoud et al., 2009), for the estimation of LAI 
and CWC maps from SEVIRI/MSG data. 

 

2 METHODOLOGY AND DATA 

2.1 Simulation 

For the simulation of the SEVIRI spectra we 
considered a leaf optical properties model PROSPECT 
(Jacquemoud and Baret, 1990) coupled with SAIL 
(Verhoef, 1984), a 1D turbid medium model for the 
canopy. This coupled modelling scheme called 
PROSAIL has been used in several remote sensing 
studies and has already been applied with success in a 
variety of crops (Duan et al., 2014). 

The PROSPECT model simulates the leaf 
hemispherical transmittance and reflectance as a 
function of four structural and biochemical leaf 
parameters: leaf structure parameter N (unitless), 
equivalent water thickness Cw (g cm−2), dry matter 
content Cm (g cm−2) and leaf chlorophyll a + b 
concentration Cab (µg·cm−2). These leaf optical 
properties simulated by the PROSPECT model are the 
inputs of the SAIL model. The SAIL model simulates 
the top-of-the-canopy reflectances as a function of 
eight input parameters: LAI (m2/m2), average leaf 
angle ALA (°), fraction of diffuse incoming solar 
radiation skyl (unitless), soil reflectance, hot-spot size 
parameter hot (m·m−1), sun zenith angle ts (°), sensor 
viewing angle to (°), and relative azimuth angle phi (°) 
between the sensor and sun. 

The PROSAIL model was run in forward mode to 
simulate canopy reflectance on three SEVIRI spectral 
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channels (0.6, 0.8 and 1.6 µm). 1000 parameter 
combinations were randomly generated with uniform 
distributions and were used to simulate the spectra. 
The specific ranges for the variables are shown in 
Table 1. 

 
Table 1. Ranges of the input variables for the PROSAIL 

model. 
Parameter Min Max 

Cw (g·cm−2) 0 0.08 
Cm (relative) 0.05 0.50 
Cab (µg·cm−2) 20 30 
LAI (m2/m2), 0 8 
hot (m·m−1) 0.001 1 
Soil (unitless) 0.7 2.3 

 
For leaf structure parameter N and average leaf 

angle ALA fixed values were chosen according to the 
values reported in the literature. (N=1.5, ALA=45º) 

 
2.2 Inversion 

Many methods including neural networks have been 
used for reflectance model inversion (Baret et al., 
2007) and for estimation of CWC (Cernicharo et al., 
2013). 

Recently a new machine learning approach, based 
on the Gaussian Process (GP) theory, has been 
introduced in the literature (Rasmussen and Williams, 
2006). According to this approach, the learning of a 
machine is formulated in terms of a Bayesian 
estimation problem, assuming that the parameters 
associated to the machine are a priori jointly drawn 
from a Gaussian distribution. 

The inversion of the PROSAIL model was 
performed to estimate CWC and LAI. We proposed 
the use of Gaussian Process Regression (GPR) for 
canopy parameter retrieval. GPR is a nonparametric 
method that learns the relationship between the 
reflectance and canopy parameter by fitting a flexible 
nonlinear model directly from the data (Verrelst et al., 
2012). In general, GPR provides better estimation 
accuracies than other machine learning algorithms 
(Lázaro-Gredilla et al., 2012) and may be of particular 
interest because they do not only provide pixel-wise 
predictions but also confidence intervals for the 
prediction. 

Figure 1 shows the scatterplot between the 
simulated data and predictions for the CWC. Model’s 
performance was evaluated with the root-mean-
squared error (RMSE), and Pearson’s correlation 
coefficient (R) to account for the goodness-of-fit. 

 
Figure 1. Simulated and predicted CWC 

 

3 RESULTS 

Extracting the relationship between the reflectance and 
canopy parameter, Gaussian Process Regression 
(GPR) provides an estimated map for LAI and CWC. 
Moreover it provides the variance associated to each 
pixel that can be interpreted as a confidence of the 
estimated parameter. Tree bands (0.6, 0.8 and 1.6 µm) 
of the SEVIRI/MSG reflectance given by the K0 
BRDF parameter were used for the GPR.  

The retrieved maps for LAI and CWC 
corresponding to 2013 June the 11th, are shown in the 
following figures.  

 
Figure 3. Canopy water content (Kg2/m2) estimated map 

retrieved with GPR (2013 June the 11th ). 

 
Figure 4. Confidence map (σ) retrieved with GPR for canopy 

water content (Kg2/m2) (2013 June the 11th ). 

 



 

 
Figure 5. Leaf area index (m 2/m2) estimated map retrieved 

with GPR (2013 June the 11th ). 

 
Figure 6. Confidence map (σ) retrieved with GPR for leaf 

area index (m 2/m2)  (2013 June the 11th ).  

 

4 QUALITY ASSESMENT 

The retrieved LAI and CWC maps have been assessed 
through the comparison with ground measurements 
and operational products of biophysical parameters. 

The SEN2Exp ground vegetation data set was used 
in order to perform a direct validation of the results 
obtained for CWC and LAI through the GPR. Indirect 
validation was performed comparing the estimations 
for LAI with Copernicus Global Land LAI GEOV1 
product downloaded through  the Copernicus Global 
Land Service. The LAI product is derived at 10-day 
temporal frequency. More details about the GEOV1 
product are available on the following website 
(http://land.copernicus.eu/global) 

 
4.1 Field campaign 

As a part of SEN2Exp campaign supported by 
European Space Agency (ESA) for obtaining data to 
simulate the instruments on board Sentinel-2 satellite, 
a field campaign took place over Hart forest (France) 
between 11-12 of June, and 3-4 of September both 
conducted in 2013 (Sanchez et al. 2014). 

In-situ vegetation characterization includes the 
sampling of the following variables: Leaf Area Index 
(LAI), Fraction of Absorbed Photosyntetically Active 
Radiation (FAPAR), Fraction of green Vegetation 
Cover (FCOVER), Fresh Weight (FW), Dry Weight 
(DW) and leaf area (A). LAI, FAPAR and FCOVER 
parameters have been obtained by using digital 

hemispheric photography (DHP), taking 12-15 
pictures for Elementary sampling unit (ESU).  

CWC was derived from the Leaf Area Index and 
the Leaf Water Content (LWC) as follows: 

 
 

 
(1)  

 (2)  

 
 
Table 2. Comparison of LAI and CWC values with SEN2Exp 

and Copernicus product over Hart forest. 
HARTH FOREST 

DATE 
LAI (m2/m2) CWC (kg/m2) 

GPR GEOV1 SEN2Exp GPR SEN2Exp 
06/11/2013 5.23 4.89 4.5 0.70 0.62 
09/04/2013 2.55 2.79 3.8 0.41 0.55 

  
 
To validate LAI estimates in a time series, we 

compared retrieved LAI values with Copernicus 
Global Land LAI GEOV1 product over 2013 (see 
Figure 7). Regarding CWC, there is no consistent 
product available to compare, nevertheless we can 
compare CWC estimates with ground measurements 
(see Figure 8). Note that error bars in Figure 7 and 
Figure 8 refer to RMSE of the Transfer Function used 
for the up-scaling process based on in situ 
measurements. 

 

 
Figure 7. Comparison of the estimated LAI and Copernicus 
LAI GEOV1 over the 2013. Red points corresponding to 
ground measurements over Hart forest. 
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Figure 8. Comparison of the estimated CWC over the 2013 
and SEN2Exp campaign. Red points corresponding to ground 
measurements over Hart forest. 

3 CONCLUSIONS 

This study using MSG/SEVIRI data has explored the 
possible use of three of its spectral channels (0.6, 0.8 
and 1.6 µm) for the estimation of CWC and LAI 
through the inversion of the PROSAIL radiative 
transfer model. Time series shows consistency of LAI 
GPR retrievals with Copernicus GEOV1 LAI product 
and the very limited ground measurements currently 
available. Results presented above indicate that the use 
of the MSG/SEVIRI data can be useful for the CWC 
and LAI retrieval. Producing CWC and LAI estimated 
maps using GPR provides also a confidence level for 
the predictions.  

Due to the high dependency of the parameter 
distribution used as input into PROSAIL, future work 
includes exploring various parameter distribution on 
RTM models for improving the database of simulated 
reflectance. Implementing a regression on multi-output 
parameter could be evaluated. Consider including 
other field campaigns will be useful to better validate 
the estimations. 
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