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The focus of the current study is to compare data fusion methods applied to sensors with medium- and high-
spatial resolutions. Two documented methods are applied, the spatial and temporal adaptive reflectance fusion
model (STARFM) and an unmixing-based method which proposes a Bayesian formulation to incorporate prior
spectral information. Furthermore, the strengths of both algorithms are combined in a novel data fusionmethod:
the Spatial and Temporal Reflectance Unmixing Model (STRUM). The potential of each method is demonstrated
using simulation imagery and Landsat and MODIS imagery. The theoretical basis of the algorithms causes
STARFM and STRUM to produce Landsat-like reflectances while preserving the spatial patterns found in Landsat
images, and the unmixing-based method to produce MODIS-like reflectances. The ability of fused images to
capture phenological variations is also assessed using temporal NDVI profiles. Temporal profiles of STARFM
NDVI closely resembled Landsat NDVI profiles. However, the unmixing-based method and STRUM produced a
more accurate reconstruction of the NDVI trajectory in experiments simulating situations where few input
high-resolution images are available. STRUM had the best performance as it produced surface reflectances
which had the highest correlations to reference Landsat images. The results of this study indicate that STRUM
is more suitable for data fusion applications requiring Landsat-like surface reflectances, such as gap-filling and
cloudmasking, especially in situations where few high-resolution images are available. Unmixing-based data fu-
sion is recommended in situations which downscale the spectral characteristics of the medium-resolution input
imagery and the STARFMmethod is recommended for constructing temporal profiles in applications containing
many input high-resolution images.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

In satellite design, a trade-offmust bemade between spatial, spectral,
and temporal resolutions. Therefore, many satellites with a high spatial
resolution (hereafter referred to as “high-resolution” imagery) have re-
stricted temporal and spectral resolutions when compared to satellites
of a medium spatial resolution (hereafter, “medium-resolution”)
(Emelyanova, McVicar, Van Niel, Tao Li, & Van Dijk, 2013). The Landsat
mission provides one of themost extensively used high-resolution data
sets due to its economic accessibility, 40-year continuous historical re-
cord, and technical specifications (Middleton et al., 2013). Landsat TM,
ETM+ and OLI sensors have a spatial resolution of 30 m for the multi-
spectral bands,which is adequate formany environmental applications.
servation Science, Faculty ITC,
Enschede, The Netherlands.

t).
However, Landsat satellites have a revisit time of 16 days (Gao, Masek,
Schwaller, & Hall, 2006), and an average of 35% of the images are
plagued by cloud cover (Roy et al., 2008). On the other hand,
medium-resolution MODIS TERRA imagery has a daily revisit period,
but a lower spatial resolution which limits its effectiveness for fine-
scale environmental applications.

By applying multi-sensor data fusion, or spatial downscaling, two
data sets are combined to create a result which exceeds the physical
limitations of the individual input data sets (Lunetta, Lyon, Guindon, &
Elvidge, 1998), and contains more information than the original input
images (Ehlers, 1991; Pohl & Van Genderen, 1998). For example,
Landsat and MODIS imagery can be fused to create a data set with a
30 m spatial resolution and a daily revisit period. Previous studies
have applied multi-sensor data fusion between medium- and high-
resolution imagery for applications such as phenology analysis
(Bhandari, Phinn, & Gill, 2012; Feng et al., 2013; Hwang, Song, Bolstad,
& Band, 2011; Walker, de Beurs, Wynne, & Gao, 2012), forest distur-
bance mapping (Arai, Shimabukuro, Pereira, & Vijaykumar, 2011;
Hilker et al., 2009; Xin, Olofsson, Zhu, Tan, & Woodcock, 2013), the
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estimation of biophysical parameters (Anderson et al., 2011; Gao,
Anderson, Kustas, & Wang, 2012; Singh, 2011), and public health (Liu
& Weng, 2012). Recent developments in four-dimensional (sample,
line, time, and wavelength) spatial-temporal imagery may also benefit
from data fusion algorithms (Mello et al., 2013; Villa, Chanussot,
Benediktsson, Jutten, & Dambreville, 2013).

The spatial and temporal adaptive reflectance fusion model
(STARFM) (Gao et al., 2006) is perhaps the most widely-used data fu-
sion algorithms for Landsat and MODIS imagery (Emelyanova et al.,
2013). It is one of the few data fusionmethodswhich result in synthetic
Landsat-like surface reflectances (Singh, 2011). This method is particu-
larly useful for detecting gradual changes over large land areas, such as
phenology studies (Gao et al., 2006; Hilker et al., 2009). A number of
studies have suggested improvements for the STARFM algorithm
(Hilker et al., 2009; Roy et al., 2008; Zhu, Chen, Gao, Chen, & Masek,
2010).

A second set of data fusion algorithms is based on unmixing tech-
niques. Traditional spectral unmixing methods rely on the linear
spectral mixture model to extract end members and abundances on a
sub-pixel scale (Bioucas-Dias et al., 2012). In the case of unmixing-
based data fusion, the number of endmembers and abundances is
obtained from the high-resolution data set, and the spectral signature
of the endmembers is unmixed from the medium-resolution data set.
This method has previously been applied to Landsat andMedium Reso-
lution Imaging Spectrometer (MERIS) data (Amorós-López et al., 2013;
Zurita-Milla, Kaiser, Clevers, Schneider, & Schaepman, 2009,
Zurita-Milla, Gómez-Chova, Guanter, Clevers, & Camps-Valls, 2011,
Zurita-Milla et al., 2009). Zurita-Milla et al. (2009) restricted the
unmixing process to positive spectral reflectances below a defined
upper limit. However, as this process was executed separately for
each spectral band it may result in unrealistic endmember spectra.
Amorós-López et al. (2013) utilized a regularization term in the
cost function to restrict the variance of the endmember spectra
from a pre-defined spectrum per class. This paper addresses these is-
sues by presenting an alternative Bayesian unmixing method. In-
cluding the Bayesian theorem into fusing processes has been
previously developed to optimally weight the spectral and panchro-
matic information in image-sharpening techniques (Fasbender,
Radoux, & Bogaert, 2008). Our proposed Bayesian method provides
a fast and easy to implement solution, which describes data fusion
uncertainties in a clear probabilistic framework.

The main advantage of unmixing-based methods is that, unlike
STARFM-based methods, they do not require high-resolution and
medium-resolution data to have corresponding spectral bands. This
allows for two additional possibilities. Firstly, unmixing-based data fu-
sion can be used to downscale extra spectral bands and/or biophysical
parameters to increase the spectral resolution of the high-resolution
data sets. Secondly, auxiliary data sets such land cover may supplement
or replace high-resolution imagery in the grouping of spectrally similar
pixels into clusters (Zurita-Milla et al., 2011).

The current paper makes a comparative assessment of the STARFM
and unmixing-based data fusion methods. Although the unmixing
algorithm is similar to previous works (Amorós-López et al., 2013;
Zurita-Milla, Clevers, & Schaepman, 2008), we propose an efficient
Bayesian solution to the unmixing problem which produces realistic
estimated spectra. Furthermore, we propose a new data fusion method,
the Spatial and Temporal Reflectance UnmixingModel (STRUM), which
combines themain features of STARFM (i.e. maintaining the spatial fine
details and spectral characteristics of Landsat) and unmixing-based fu-
sion methods (i.e. incorporating the temporal signatures of MODIS) to
obtain temporally stable synthetic imagery at Landsat spatial resolution.
The accuracy of eachmethod is quantitatively assessed using simulated
imagery as well as Landsat and MODIS reflectance products. In particu-
lar, the potential to transfer temporal information from MODIS to
Landsat in order to capture phenological variations (i.e. NDVI profiles)
is demonstrated.
2. Algorithm theory

2.1. STARFM

The STARFM algorithmdescribed by Gao et al. (2006)was applied in
the current study. The algorithm is based on the premise that both
Landsat and MODIS imagery observe the same reflectance, biased by a
constant error. This error depends on the characteristics of a pixel, and
is systematic over short temporal intervals. Therefore, if a base
Landsat–MODIS image pair is available on the same date, this error
can be calculated for each pixel in the image. These errors can then be
applied to the MODIS imagery of a prediction date to obtain a Landsat-
like prediction image of that date.

This is done by following four steps. Firstly, MODIS data are
reprojected and resampled to the Landsat imagery. Secondly, a moving
window is applied to the Landsat imagery to identify similar neighbor-
ing pixels. Thirdly, a weight Wijk is assigned to each similar neighbor
based on: (i) the spectral difference between surface reflectances of
the base Landsat–MODIS image pair, (ii) the temporal difference of
the pixel's value in both MODIS images, and (iii) the spatial Euclidean
distance between the neighbor and the central pixel.

The fourth and final step consists of calculating the surface reflec-
tance of the central pixel. The algorithm is characterized in Eq. (1),
where L (xω/2, yω/2, tk) represents the central pixel of the moving
window for the Landsat image prediction, M (xω/2, yω/2, tk) is the value
of the MODIS pixel on the prediction date, andL (xω/2, yω/2, t0) and
M (xω/2, yω/2, t0) are the values of the Landsat and MODIS pixels of the
base pair images:

L xω
2
; yω

2
; tk

� �
¼

Xω
i¼1

Xω
j¼1

Xn

k¼1

Wijk � M xi; yj; tk
� �

þ L xi; yj; t0
� �

−M xi; yj; t0
� �� �

ð1Þ

For amore detailed description of the STARFM algorithm,we refer to
Gao et al. (2006).

2.2. Unmixing-based data fusion

An unmixing-based data fusion method was developed, primarily
based on previous works (Amorós-López et al., 2013; Zurita-Milla
et al., 2008), but introducing some modifications. Unmixing-based
image fusion applies four steps to solve the linear mixing model:
(1) clustering the high-resolution data set to define the end members,
(2) calculating the fractions, or abundances, of each endmember within
each medium-resolution pixel, (3) unmixing the medium-resolution
pixel, and (4) assigning reflectance spectra to the high-resolution pixels
(Fig. 1).

In Step 1, the present study applies the k-means algorithm to identi-
fy k spectral clusters. Other studies have used different clustering
algorithms such as ISODATA (Zurita-Milla et al., 2008) and fuzzy
k-means (Amorós-López et al., 2013). Auxiliary information, such as
temporal variance or land cover data, may supplement or replace the
high-resolution image in this step.

The second step applies a sliding window of [n × n] MODIS pixels
to the clustered image to record the endmember fraction matrix A, a
[n2 × k]matrixwithn2 rows (one for eachpixelwithin theneighborhood)
and k columns (one for each endmember). The use of a sliding window
allows for spectral differences between pixels of the same cluster in
different locations.

In Step 3, the unmixing is performed by solving the linear mixing
model (Eq. 2), which is done separately for each MODIS band (λ). The
aim is to solve for e(λ) a [k × 1] column vector that contains the reflec-
tance of each of the k endmembers. r(λ) is a [n2 × 1] column vector
containing the surface reflectance of eachMODIS pixel in the n× nmov-
ing window for the MODIS band λ which is currently being unmixed.



Fig. 1. Theoretical workflow of the unmixing-based data fusion algorithm.
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This is achieved by minimizing the residuals (ε) of the linear model
(Eq. 2).

r λð Þ ¼ A e λð Þ þ ε ð2Þ

Two considerations are particularly important in the unmixing step:
the relation between the number of clusters and the moving window
size and restricting the unmixing phase. Regarding the former, spectral
unmixing is very sensitive to co-linearity problems inwhich high corre-
lations between endmembers lead to inversion of ill-posed matrices
(García‐Haro, Sommer, & Kemper, 2005). Though it is mathematically
feasible to use asmany classes (k) as low resolution pixels in the neigh-
borhood (n2), highly correlated data exert a significant influence on the
estimates. Hence, n2 should be considerably larger than the number of
classes k. The idea consists of restricting the set of possible classes to a
reduced number (k′) of appropriate classes that can be different for
each sliding window, thereby allowing a more accurate decomposition.
This is achieved by discarding classes with fractional abundance not
exceeding a value of 0.10 in at least one of the MODIS pixels of the
neighborhood.

The second consideration is that unmixing may produce unrealistic
estimated spectra if the spectral shape of the endmembers is not im-
posed in any way. There are a number of strategies which address this
problem. Zurita-Milla et al. (2008) proposed restraining the linear
unmixing method by ensuring that the reflectance values must be pos-
itive and not exceeding an appropriate upper limit. Amorós-López et al.
(2013) included a spectral regularization term in the formof a cost func-
tion which precludes that endmembers identified in the window differ
considerably from pre-defined endmember spectra obtained from the
input images.

In this paper, we propose an alternative solution, based on Bayesian
theory, to constrain the estimation of the endmembers e(λ). By assum-
ing a prior probability of the values to be inferred p(e(λ)) the Bayesian
rule can be applied to combine data r(λ) and prior p(e(λ)) information.
In this study, we assumed a Gaussian distribution withmean e0 and co-
variance matrix Σ0, i.e. p(e(λ)) = N (e0, Σ0). We also assumed that the
data r(λ) are noisy observations also following a Gaussian distribution,
with covariance matrix Σr. Under these assumptions, the posterior
distribution for the solution, p(e(λ)|r(λ)), follows a normal distribution
with expectation value μe and covariance matrix Σe, i.e.:

p e λð Þjr λð Þ
;A

� �
≈ N ejμe;Σeð Þ: ð3Þ

Applying the Bayes' theorem for conditional probabilities gives us
the following expressions (Murphy, 2012):

Σe ¼ Σ−1
o þ ATΣ−1

r A
h i−1 ð4Þ

μe ¼ Σe ATΣ−1
r r λð Þ þ Σ−1

o eo
h i

: ð5Þ

Note that μe is theminimummean square error estimator of the end
members. μe is expressed as the sum of two terms. The first term is lin-
ear in r(λ), being the unconstrained estimator, whereas the second term
is linear in e0. Thus the predicted value for the endmembers results from
a compromise between the information coming from themeasurement
r(λ) and the prior knowledge e0 that we have regarding the end
members.

In this study, we used spherical covariance matrices for simplicity,
defining Σ0 and Σr as follows:

Σ0 ¼ σ2
0I kð Þ Σr ¼ σ2

r I n2
� �

: ð6Þ

where I(k) and I(n2) represent the [k× k] and [n2 × n2] identitymatrices,
respectively, andσ0

2 andσr
2 present the variances assigned to the prior of

e(λ) and the noisy data r(λ). If the precision assigned to the prior is strong
relative to the data strength (σ0 is large relative toσr), more emphasis is
put on the prior and vice versa. The relative importance of the prior is
controlled in this study by optimizing the ratio σratio = σr/σ0. By reduc-
ing σratio, more weight is put on the prior.

The prior end member means e0 are selected among MODIS pixels
with high abundance levels for each class, similar to the approach pre-
sented by Amorós-López et al. (2013). Selecting end members directly
from the image may reduce biases caused by atmospheric conditions
and radiometric corrections. For each class, the purity of the MODIS
pixel presenting the highest end member abundance is retained. This
allows us refine themethod using a class specific precision, i.e. replacing
the spherical covariance matrix (Eq. 6) by a diagonal covariance matrix
in which each term is regulated by the purity of the class. The reliability
of the prior is thus assumed to be small for classes with lower
homogeneity.

The fourth and final step creates the fused image. The unmixed spec-
trum of the relevant endmember is assigned to each pixel at Landsat
scale. This is done separately for each MODIS pixel through the use of
a moving window, thus taking into account spectral variability within
each cluster, or end member, throughout the scene.

2.3. STRUM

Steps 1 and 2 in STRUMare identical to theprevious unmixingmeth-
od but steps 3 and 4 are inspired by STARFM principles, assuming that
MODIS and Landsat surface reflectance are radiometrically and tempo-
rally comparable. Similar to the STARFM, this method requires three
input images: a Landsat and MODIS image on the same base date (t0),
and a MODIS image on the prediction date (tk). A residual image is de-
fined as the difference between the two MODIS images, i.e. residual =
r (tk) − r (t0). This is utilized in step 3 as the input medium-resolution
data set and unmixed using the same Bayesian approach described
above.

residual λð Þ ¼ A e λð Þ þ ε ð7Þ

image of Fig.�1
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The aim is to solve for e(λ), a column vector that contains temporal
changes of each endmember spectra in MODIS band (λ). The definition
of this residual implies that STRUM requires corresponding spectral
bands between the high- and medium-resolution data, as opposed to
the unmixing method which can be applied to all the spectral bands
of the medium-resolution data.

Step 4 creates the fused image. The temporal change of the relevant
endmember is assigned to each Landsat pixel in the window to its class
label, and added to the input Landsat image on the base date:

L tkð Þ ¼ L t0ð Þ þ eð
λÞ ð8Þ

The fused results therefore provide Landsat-like reflectances con-
taining information regarding temporal variation in surface reflectances
obtained from the input MODIS imagery.

3. Materials and methods

3.1. Study area

The study area is in the Barrax region near Albacete, Spain (39.9° N,
2.5° W). It is a square area of 576 km2, which corresponds to 800 × 800
Landsat pixels. Typical elevations lie around 700m, and it has aMediter-
ranean climate. It is located in one of the driest regions of Europe, with
mean annual rainfall below 400 mm (Su et al., 2008). Approximately
90% of the study area is used for agricultural purposes, 7% consists of for-
ests and semi-natural areas, and the remaining 3% are artificial areas
such as urban fabric. Crops in the region consist of cereals, alfalfa, sun-
flower, potato, sugar beet and vegetables (Amorós-López et al., 2013).

3.2. Experiment with Simulation Imagery

The three data fusionmethods were first applied to simulated im-
agery in order to eliminate the interference of confounding factors
such as radiometric and geometric inconsistencies between sensors.
To create the simulated imagery, a number of polygons were digita-
lized over the input Landsat imagery to represent agricultural fields.
Eight spectral classes were defined and assigned realistic spectral
values corresponding to eight land use classes (bare soil, asphalt,
water, forest and four crops in various stages of development),
which were obtained from the Landsat imagery. The polygons were
transformed to a 6-band raster representing the high-resolution
image. This image was then resampled at a ratio of 15:1 to create
the medium-resolution image, thus obtaining a spatial ratio similar
to that of MODIS (463 m) to Landsat (30 m) imagery. A total of four
sample images were created, two MODIS-like images and two
Landsat-like images for two different dates: t0 and tk.

The base image pair on day t0 was combined with the medium-
resolution image on prediction date tk to predict the high-resolution
image on the prediction date. This simulates the application of data fu-
sion in a situation with temporal change. The results of all three
methods were compared to the simulated high-resolution images on
tk by calculating the RMSE, bias (ρLandsat− ρfused) and Pearson's correla-
tion coefficient (r) between the prediction and high-resolution images.

3.3. Data fusion applications using satellite imagery

3.3.1. Satellite image pre-processing
The current study uses Landsat 8/OLI imagery for the high-

resolution input data. The Landsat 8 images were downloaded as a
Level 1T product and corrected to TOA reflectance using the parameters
provided in the metadata file. The images were atmospherically
corrected using the dark object subtraction (DOS) method (Chavez,
1988). As the study area lies in two Landsat paths, images are available
every 8 days rather than the usual interval of 16. However, only six
corresponding cloud-free Landsat 8/OLI images were available within
the time frame: April 14, May 23, June 1, June 24, July 3, and July 19,
2013.

Themoderate resolution imaging spectroradiometer (MODIS) sensor,
on board satellites Terra and Aqua, is used for medium-resolution imag-
ery. The MODIS MCD43A4 Nadir BRDF-Adjusted Reflectance product
with a 463 m resolution was utilized, as previous studies have indicated
that MODIS BRDF products provide more accurate data fusion results
than daily MODIS surface reflectances (Roy et al., 2008; Walker et al.,
2012). This product is a 16-day composite of both Aqua and Terra satel-
lites, produced every 8 days. Seventeen consecutive MCD43A4 images
between March 30, 2013 and August 5, 2013 were used.

All imageswere subsetted to the study area, low-quality pixels iden-
tified by the quality flag information were removed, and the images
were reprojected to UTM coordinates. Furthermore, the geometric
co-registration of each Landsat–MODIS image pair was optimized. This
was done by determining the optimal offset which maximized the
Pearson's correlation coefficient between all spectral bands of the
MODIS image and resampled Landsat image.

Inspection of the data revealed significant differences between the
Landsat and MODIS reflectance data sets, caused by differences in
image processing chains and spectral band difference effects (Teillet,
Fedosejevs, Thome, & Barker, 2007). In order to reduce this bias, a radio-
metric normalizationmethodwas applied, which assumes a linear rela-
tionship between the reflectance of both images. The critical aspect is
the determination of suitable invariant pixels (at MODIS scale) upon
which to base the normalization. We applied iteratively reweighted
multivariate alteration detection (IRMAD) transformation (Nielsen,
2007) to select pixels with a high no-change probability (i.e., N0.95).
The method is completely automatic and compares favorably with nor-
malization using hand-selected invariant features (Canty & Nielsen,
2008). We regressed the (resampled) Landsat images onto the corre-
sponding MODIS images at no-change locations. For each band, slope
and intercept parameters were obtained using orthogonal linear regres-
sion, since it outperformed the ordinary least squares regression.

3.3.2. Data fusion optimization
Sensitivity to input parameters, distribution of prediction errors and

the quality of the results were analyzed for all three fusion methods.
Firstly, optimal input parameters were identified for each algorithm
using the Landsat 8/OLI image on July 3, 2013 and theMODIS composite
from June 26 to July 12th as base images, and the MODIS composite
from July 12 to 28th to represent the prediction date. For the
unmixing-based method, the number of clusters was varied using the
values k = 10, 20, 40, and 80. The window size was also varied from
ω = 5 to 41 MODIS pixels in steps of 4. The weight of the a priori
endmember information was varied, using the values σratio = 0.01, 1,
2, and 5. The input parameters of STRUM are equal to those of the
unmixing-based algorithm and were therefore not calculated separate-
ly. Regarding the STARFM algorithm, there were two main parameters
of interest. The search distance refers to the maximum distance be-
tween the pixel being predicted and the similar neighbor. This was
assigned values of 250 m, 500 m, 750 m, 1000 m, 1500 m, 2000 m,
and 3000 m. Secondly, the number of spectral slices influences the
initial selection of similar neighbors within the moving window. The
number of spectral slices refers to the number of land cover classes ex-
pected to be present in the image (Zhu et al., 2010). Twice the standard
deviation divided by the number of spectral slices determines the max-
imum spectral difference between the central pixel and the potentially
similar neighbor. Thus, a higher number of spectral slices imply a
stricter selection. In this study, 10, 20 40 and 80 spectral slices were
utilized.

The results were compared to the actual Landsat image on July 19,
2013 using the RMSE, Pearson's correlation coefficient, and the Erreur
Relative Globale Adimensionnelle de Synthèse (ERGAS). The ERGAS as-
sumes that the fused result must be spectrally similar to the medium-
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resolution image (Wald, 2002) and spatially similar to the high-
resolution image (Lillo-Saavedra, Gonzalo, Arquero, & Martinez, 2005),
and is calculated as follows:

ERGASspectral ¼ 100
h
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nban

XNban

i¼1

RMSEi=Mið Þ2
vuut ð9Þ

ERGASspatial ¼ 100 � h
l
� RMSE

M
ð10Þ

where h is the spatial resolution of the high-resolution image, l is the
spatial resolution of the low-resolution image, Nban is the number of
spectral bands, M is the mean spectral value of all bands, and Mi is the
mean spectral value of band i. Lower ERGAS values indicate a higher fu-
sion quality.

After defining the optimal input parameters, the quality of the opti-
mal fused images was further analyzed to identify possible dependen-
cies on spectral region and spatial distribution. The spatial distribution
was analyzed by assessing the linear relationship between the RMSE
of fused reflectances (referred to the Landsat observations) and the nor-
malized difference vegetation index (NDVI) of the Landsat observations.

3.3.3. Temporal profile analyses
In order to assess whether the fused images are suitable for studying

vegetation dynamics, the final experiment consisted of applying both
algorithms to create NDVI temporal profiles of 17 fused images at
8-day intervals. TheNDVI is a commonly-used index to estimate vegeta-
tion greenness which reflects both density and condition. Although it
has known limitations (Jiang et al., 2006) and NDVI values show dis-
crepancies between sensors (Steven, Malthus, Baret, Xu, & Chopping,
2003; Van Leeuwen, Orr, Marsh, & Herrmann, 2006), it has often been
used for the development of temporal profiles for vegetation analysis
(Gu, Li, Huang, & Okin, 2009; Hmimina et al., 2013) and agricultural
monitoring (Lunetta, Shao, Ediriwickrema, & Lyon, 2010).

The NDVI time series were assessed by examining seasonal varia-
tions over four representative agricultural fields. The aim of the experi-
ment was to fill gaps in the Landsat 8 temporal profiles by usingMODIS
data with more frequent coverage. After evaluating an ideal scenario in
whichmany Landsat imageswere available, the same testswere carried
out using only one or two Landsat 8 images to create the time series.
This simulates realistic situations in which few high-resolution images
are available. Furthermore, it allows unused Landsat images to act as a
testing data set to analyze the quality of the fused NDVI predictions.
Finally, NDVI predictions of the first series including all input Landsat
images were resampled to the MODIS resolution and compared with
the NDVI profiles of the original MODIS imagery over three homoge-
nous (at MODIS resolution) sites.

4. Results

4.1. Experiment with simulated imagery

A visual comparison of the simulation results indicates that all three
methods accurately predict the corresponding Landsat-like image
(Fig. 2). Both colors and fine spatial details are correctly captured in
the fused images. Errors are higher when no homogenous medium-
resolution pixels are available within the search distance. This is espe-
cially visible in the STARFM method (Fig. 2h), where the narrow beige
areas between the larger agricultural fields appear slightly reddish.
The STARFMmethod also produced errors around the borders of objects
which had similar reflectance values in the base date, but follow differ-
ing temporal patterns. For example, the two circular fields in the upper
right corner of the simulation imagery were both vegetated on the base
date, but the right field had been “harvested” before the second date. In
the left border of the harvested field, somepixels are bright green rather
than taupe (Fig. 2c). This is due to the selection of similar neighbors
from the field to the left (which is still vegetated). Similar errors are
visible in pixels of the irregular field in the bottom left of the image
which border the vegetated field. The unmixing-based method and
STRUM do not display such errors.

Quantitative indicators indicate STRUM provided the most accurate
predictions in the simulation imagery tests (Table 1). It closely replicat-
ed the actual simulation image, as the correlation, RMSE and ERGAS are
almost perfect. STARFM method performed better than the unmixing-
based method, although the performance of the latter was also very
good.

4.2. Optimization of input parameters

4.2.1. STARFM
Both search distance (ω) and the number of spectral slices (m) influ-

ence which pixels are utilized to form the linear system of equations.
Changing these parameters obtained slightly different STARFM
products. The RMSE was lower for higher amounts of spectral slices.
Increasing search distance was related to a decreasing RMSE, although
for 80 spectral slices the RMSE becomes rather insensitive to the search
distance. Larger search distances greatly increased computational costs,
so the optimal parameters were defined as m = 80 spectral slices and
ω=750 meters. Using these optimal parameters (Fig. 3) produced sur-
face reflectances very similar to Landsat imagery, as indicated by
Table 2.

Using optimal input parameters, the errors of each spectral band
were calculated (Table 3). Most Landsat/MODIS band combinations
provided similar errors, although the combinations with larger wave-
lengths (TM4/MODIS2, TM5/MODIS6, and TM7/MODIS7) provided
higher errors. Regarding spatial distribution of errors, no significant cor-
relation was found between prediction errors and NDVI of the Landsat
image (p b 0.001), which reveals that vegetation density has no influ-
ence on the accuracy of the STARFM predictions within the study area.

4.2.2. Unmixing-based data fusion
Fig. 4 presents the relation between variations of the input parame-

ters on the data fusion quality (represented by ERGAS) of the unmixing-
based method. The results indicate that high numbers of clusters
combined with small moving-window sizes lead to poor-quality fused
results. The accuracy was higher for smaller numbers of clusters (lower
ERGAS and higher correlation coefficient). Few clusters (i.e. k = 10 or
20) produced better indicator values, and reduced the sensitivity to var-
iations inmoving-window size. In order to preserve the spectral variabil-
ity while maintaining fusion quality, a small value of neighborhood size
(i.e. less than 20) was preferred. Furthermore, it was observed that the
inclusion of a priori spectral information allows to significantly improve
the results. For example, a significant reduction of ERGASspectral is ob-
servedwhen assigning equal variance to prior information andmeasure-
ments (σratio = 1) compared with a nearly unconstrained estimate and
uninformative prior (σratio = 0.01). Taking into account the ERGAS
values in Fig. 4 and a visual inspection of the fused images, the optimal
parameters in the current study were defined as ω = 9, k = 20 and
σratio = 1.0, although other combinations are also possible. These input
parameters produced a fused productwhich contained spectral informa-
tionmore accurately portraying the MODIS reflectances than Landsat, as
the correlation coefficient, RMSE, and ERGAS indicate (Table 2). This is
reflected in Fig. 3, which illustrates that the STARFM output is spectrally
very similar to the Landsat imagewhereas the unmixed-based output re-
tains mainly the spectral characteristics of the MODIS image. Compared
with the unmixing-based method, the STARFM and STRUM algorithms
accurately preserve most of the fine spatial detail in the Landsat image.
The computation time per fused image in Fig. 3 was 68.9 s (STARFM),
15.8 s (STRUM), and 15.7 s (unmixing-based method) on a computer
with an Intel® Core™ i7-2670QM processor and 8.00 GB RAM.



Fig. 2. The simulatedmedium-resolution imagery for base date t0 (a) and prediction date tk (f), the simulatedhigh-resolution imagery for t0 (b) and tk (g), the STARFM (c), unmixing-based
(d), and STRUM(e) results of the simulation tests. (h), (i), and (j) provide a closer look to a subset of the results of STARFM, unmixing-based fusion and STRUM respectively. All images are
displayed with the band combination R:SWIR, G:NIR, and B:Red.
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STRUMmost accurately predicted the actual Landsat 8 observations
(Table 2). The correlation toMODIS imagerywas slightly lower than the
original unmixing-based method, although it was still higher than that
of the STARFM. Visually, this method also produces a fused data set
which is highly comparable to the reference Landsat image (Fig. 3).

Table 3 indicates that the quality of the fused product for each spec-
tral bandwas satisfactory. Each band had a higher correlation and lower
RMSE for the MODIS imagery than the Landsat imagery. The TM4/
MODIS2 combination had the lowest correlations and highest RMSE to
both the Landsat and MODIS imagery. The correlations of the other
spectral bands were similar, although the RMSE increased with the
wavelength. The spectral distribution of STRUM prediction errors
followed a similar pattern.

4.3. Derivation of temporal profiles

The first scenario used all available input Landsat 8 images to create
the NDVI profile. The results demonstrate that the STARFM algorithm
precisely captured Landsat 8/OLI NDVI values (Fig. 5). The unmixing-
based method and STRUM slightly overestimated Landsat NDVI at low
vegetation densities, while slightly underestimating the Landsat NDVI
at higher vegetation densities.

Temporal profiles were also derived using only one or two Landsat
input images. The results of these scenarios illustrate that STARFM pre-
dictions are highly dependent on the number input image(s) (Fig. 6).
STARFM always used the temporally closest image base pair for predic-
tions. The point where the input image changed (between DOY = 161
and DOY = 169) is obvious in the STARFM temporal profiles. When
using only one input image for the temporal profiles, STARFM failed to
Table 1
Quality indicators of data fusion applied to simulation imagery.

Method rLandsat rMODIS RMSELandsa

STARFM 0.998 0.999 0.009
Unmixing-based 0.980 0.979 0.016
STRUM 1.000 1.000 0.000
capture phenological variations. However, the unmixing-basedmethod
and STRUM generally follow the phenological trends indicated by the
Landsat 8 imagery, even when only one input Landsat image is used.
Furthermore, the STARFM method produces negative NDVI values in
some situations (e.g. Fig. 6e and f), which is likely due to the fact that
the algorithm processes each spectral band separately.

The final temporal profile experiment consisted of comparing the
resampled fused images to the MODIS NDVI over homogenous (at the
MODIS resolution) sites. Fig. 7 indicates that all three methods captured
relative phenological variations indicated by the MODIS images. The
unmixing-based algorithm is the only algorithm that does not utilize
Landsat reflectance to obtain predictions, which is likely why this algo-
rithm is slightly better at reproducing MODIS NDVI observations than
the other two methods.

5. Discussion

5.1. Error distributions and optimal input parameters

The results presented in the current study indicate that all three fu-
sion methods can successfully fuse MODIS and Landsat imagery. The
lowRMSE and biases obtained through the STARFMmethod are compa-
rable to those obtained by other studies (Emelyanova et al., 2013; Gao
et al., 2006). However, the inclusion of a priori spectral information in
the current unmixing-based algorithm enhances the data fusion quality
when compared to the ERGAS values obtained by similar studies. The
current methodology obtained a spectral ERGAS of 0.52 and a spatial
ERGAS of 1.13, whereas similar studies obtained 0.95 and 1.90 (Zurita-
Milla et al., 2008), 0.58 and 2.10 (Zurita-Milla et al., 2009), and 1.35
t RMSEMODIS ERGASspatial ERGASspectral

0.007 0.293 0.224
0.015 0.668 0.624
0.000 0.004 0.002
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Fig. 3. Results of data fusion using July 3, 2013 as a base date to predict reflectance on July 19th. The top rowpresentsMODIS composite of July 12–28, 2013 (a), the reference Landsat image
on July 19th (b), and the predictions using STARFM (c), the unmixing-based algorithm (d), and STRUM (e). The second row displays a detailed subset of each image to enhance the dif-
ferences. All images are displayed with the band combination R:SWIR, G:NIR, and B:Red.
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and 2.45 (Amorós-López et al., 2013) respectively when applied to
MERIS and Landsat imagery of various agricultural areas. It should be
noted that the imagery utilized in the other studies is not identical to
that of the current study, so comparison of ERGAS values is only indica-
tive. STRUM obtained a slightly lower spectral ERGAS of 0.66 while im-
proving the spatial ERGAS 1.02. One further advantage of the proposed
unmixing methods is the use of a Bayesian framework, which provided
clear uncertainty ranges and efficient computation.

Predictions in theNIR region (TM4/MODIS2) had the lowest correla-
tion to both Landsat and MODIS images for all three methods. The
RMSE, however, increased at longer wavelengths for all methods. Re-
garding the relation between error distribution and vegetation cover,
the STARFM showed no significant distributions. However, both
unmixing-based methods displayed a slightly positive trend between
vegetation cover and prediction error in all regions except the NIR.
The overestimation of red reflectance and underestimation of NIR
causes the slight overestimation of low Landsat NDVI values and slight
underestimation of high Landsat NDVI values which was visible in the
Table 2
Global indicators of fused images produced using optimal input parameters.

Data fusion method rLandsat rMODIS RMSELand

STARFM 0.953 0.975 0.044
Unmixing-based 0.949 0.989 0.045
STRUM 0.963 0.978 0.039

Table 3
Data fusion quality indicators using the optimum input parameters for each spectral band.

Spectral bands STARFM Unmixing-bas

Landsat MODIS Landsat

r RMSE r RMSE r R

TM1/MODIS3 0.910 0.013 0.945 0.008 0.836 0
TM2/MODIS4 0.906 0.021 0.936 0.014 0.858 0
TM3/MODIS1 0.916 0.033 0.942 0.022 0.882 0
TM4/MODIS2 0.829 0.041 0.899 0.023 0.764 0
TM5/MODIS6 0.830 0.067 0.877 0.044 0.829 0
TM7/MODIS7 0.870 0.062 0.899 0.042 0.857 0
time profiles. This is likely due to the mixing of MODIS pixels which
smooth the extremes values of Landsat reflectances, such as averaging
vegetation densities over a larger area. Further investigations regarding
the distribution of prediction errors, and if such errors are spatially and
temporally consistent, could play a significant role in algorithm im-
provement. Another line of research could compare optimal data fusion
input parameters identified in the current study with other studies to
possibly identify a set of generally applicable input parameters. This
could significantly speed up the application of data fusion to new areas.

5.2. Comparison of data fusion algorithms

The theoretical basis of the algorithms causes STARFMand STRUM to
produce Landsat-like reflectances, and the unmixing-based method to
produce MODIS-like reflectances. Such differences must be taken into
accountwhen comparing the results of each data fusionmethod. By ap-
plying the IRMAD radiometric normalization technique, biases between
sensors wereminimized. However, this does not eliminate the problem
sat RMSEMODIS ERGASspatial ERGASspectral

0.029 1.155 0.685
0.021 1.133 0.521
0.027 1.018 0.662

ed STRUM

MODIS Landsat MODIS

MSE r RMSE r RMSE r RMSE

.016 0.957 0.007 0.925 0.012 0.936 0.009

.025 0.958 0.012 0.921 0.019 0.940 0.013

.038 0.959 0.018 0.936 0.029 0.938 0.022

.046 0.921 0.021 0.817 0.043 0.876 0.026

.062 0.947 0.028 0.872 0.057 0.892 0.040

.061 0.950 0.029 0.907 0.052 0.907 0.039
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Fig. 5. Temporal profiles of the average NDVI of two agricultural fields resulting from the
STARFM, unmixing-based fusion and STRUM using all available input Landsat images,
compared to the NDVI calculated from actual Landsat andMODIS imagery (for interpreta-
tion of the references to color in thisfigure legend, the reader is referred to thewebversion
of the article).
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completely and therefore this study utilized simulated imagery where
MODIS-like reflectances are obtained directly from the Landsat-like re-
flectances to support the comparison of the three data fusion methods.
The results of simulation imagery experiments suggest that STRUMpro-
vides the most accurate predictions, followed by STARFM and the
unmixing-based algorithm. The simulation tests also highlight a num-
ber of causes of prediction errors. For example, similar neighbors are se-
lected separately for each spectral band in the STARFMalgorithm,which
may cause the fused spectra to be unrealistic. This is supported by the
negative NDVI values of low vegetation cover obtained by some time se-
ries (Fig. 6e and f).

The unmixing-based method identified similar neighboring pixels
more accurately. This is visible in the simulation test, where the
unmixing method identified slight differences in spectral reflectance
which anticipated differing temporal tendencies. Furthermore, results
of the temporal profiles supported this finding by revealing that
unmixing-based predictions were less dependent on the number of
input high-resolution images. STRUM maintained this good perfor-
mance with low dependence on the availability of Landsat imagery,
but furthermore provided surface reflectance data which accurately
reflected actual Landsat observations. The computation time of the
unmixing-based method and STRUMwas also much lower.

The limitations of STARFM in identifying temporal variations in sur-
face reflectances, as displayed in Fig. 6, are also due to the formulation of
the STARFM algorithm. The weight for each spectrally similar neighbor
is inversely proportional to the difference in reflectancemeasured in the
MODIS image between the base and the prediction dates. Although this
was intended to stabilize the algorithm, it also causes it to be biased to-
wards pixels representing little temporal change. The STRUM method
avoids this issue by using clustering methods to select similar pixels.

Gridding effects and the point spread function (PSF) cause the sen-
sor observation in any grid cell to be only partially derived from the lo-
cation of the cell (Gómez-chova et al., 2011; Tan et al., 2006). This may
influence unmixing-based fusion, especially for pixels along the borders
of differing land covers. In this paper, the use of Nadir BRDF-Adjusted
Fig. 4. Response of the spectral ERGAS (a) and spatial ERGAS (b) to changes in the moving win
spectral ERGAS (c) and spatial ERGAS (d) to changes in the moving window size (w) and a pri
reflectance (MCD43A4) may lower these influences, which could be
more significant when using daily MODIS images due to different
image acquisition angles. The high quality of the unmixing-based re-
sults (Table 2) suggests that remaining gridding effects do not seriously
dow size (w) and the number of clusters (k) for a fixed σratio = 0.01, and the response of
ori weighting (σratio) for a fixed k = 20.
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Fig. 6. A selection of temporal profiles of STARFM, unmixing-based, and STRUMNDVI predictions for: scenarios using both the first and last Landsat image to create the temporal profiles
(a) and (b), and scenarios using only thefirst (c), (d) or last (e), (f) Landsat image to construct the time series (for interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article).
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deteriorate fusion quality, although the extent towhich PSF plays a role,
and whether the improved accuracy outweighs the additional process-
ing costs, should be subject to further study.

6. Conclusions

This study performs a benchmarking comparison and quality assess-
ment of spatial downscaling through the data fusionmethods: STARFM,
a recent Landsat–MODIS data fusionmethod that has gainedmuch pop-
ularity over the last few years, and two unmixing-based methods. The
two unmixing-based methods rely on a Bayesian approach that opti-
mally incorporates the available prior spectral information to constrain
the unmixing process. The first unmixes MODIS imagery directly. The
second, STRUM, is a novel approachwhich unmixes the temporal differ-
ences in MODIS imagery, and then adds it back to the Landsat reflec-
tance in a similar manner as the STARFM. To our knowledge, this is
the first study in which the unmixing-based method is applied to
MODIS imagery and directly compared to STARFM. All three methods
are compared using Landsat and MODIS reflectance products as well
as simulated imagery, and provide high-quality fused data sets. A
multitemporal analysis (using 6 Landsat 8/OLI and 17 MODIS images)
allowed assesses the ability of fused images to reconstruct vegetation
dynamics through NDVI temporal profiles.

Moreover, the current study underlines the difficulty of comparing
conceptually different data fusionmethods. This limitationwas partially
overcome by using simulated imagery. In the test simulating temporal
change, both algorithms boasted a similar performance. However, the
STARFM exhibited prediction errors in a few cases due to unsuitable
neighbor selection in areas following differing temporal patterns,
whereas the unmixing method had similar performances in situations
with temporal change. This finding was consistent with the application
to satellite imagery. Although the STARFM accurately predicted Landsat
surface reflectances, the unmixing-based method produced better re-
sults when few reference Landsat images are available. These results
suggest that the STARFM is more sensitive to temporal change than
the unmixing-based method. The application of STRUM further mini-
mizes cross-sensor surface reflectance biases and results in the highest
correlations to reference Landsat-8 data of all three methods.

To conclude, the selection of the optimal data-fusionmethod depends
greatly on the intended application. STRUM is expected to have the
best performance in most applications, such as gap-filling, cloud-
replacement, and observing temporal dynamics in situations where lim-
itedhigh-resolution images are available. Other unmixing-basedmethods
maintain the spectral information of the medium-resolution image.
STARFM may have a higher performance in situations where many
high-resolution images are available. Although the current study applied
data fusion to Landsat and MODIS images, the techniques described here
can easily be applied to other sensors. Further research could continue
analyzing algorithm performance in various situations to facilitate the
selection of the most appropriate algorithm in future applications.

image of Fig.�6


Fig. 7. Temporal NDVI profiles of homogenous MODIS pixels, compared to Landsat,
STARFM, unmixing-based and STRUM NDVI values resampled to MODIS resolution
(463m) (for interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of the article).
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